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Traffic congestion is largely due to the high proportion of solo drivers during peak hours. Ridesharing, in the sense of carpooling,
has emerged as a travel mode with the potential to reduce congestion by increasing the average vehicle occupancy rates and reduce
the number of vehicles during commuting periods. In this study, we propose a simulation-based optimization framework to
explore the potential of subsidizing ridesharing users, drivers, and riders, so as to improve social welfare and reduce congestion.
We focus our attention on a realistic case study representative of the morning commute on Sydney’s M4 Motorway in Australia.
We synthesize a network model and travel demand data from open data sources and use a multinomial logistic model to capture
users’ preferences across different travel roles, including solo drivers, ridesharing drivers, ridesharing passengers, and a reserve
option that does not contribute to congestion on the freeway network. We use a link transmission model to simulate traffic
congestion on the freeway network and embed a fixed-point algorithm to equilibrate users’ mode choice in the long run within the
proposed simulation-based optimization framework. Our numerical results reveal that ridesharing incentives have the potential to
improve social welfare and reduce congestion. However, we find that providing too many subsidies to ridesharing users may
increase congestion levels and thus be counterproductive from a system performance standpoint. We also investigate the impact
of transaction fees to a third-party ridesharing platform on social welfare and traffic congestion. We observe that increasing the
transaction fee for ridesharing passengers may help in mitigating congestion effects while improving social welfare in the system.

1. Introduction

One of the major factors behind road traffic congestion is the
low occupancy rates of vehicles which utilize a high amount
of road capacity per passenger travelling. In Australia, more
than 69% of individuals drive to work each day, with a
further 5% travelling as passengers [1]. With urban sprawl,
the impact of road congestion on the economy and on
society is forecasted to increase significantly in future de-
cades [2]. Further examining travel mode choice in Sydney
(see Table 1) reveals that the average occupancy of cars is
1.46, which is aligned with findings from a decade ago [4].
Yet, the average occupancy of private cars is only 1.1–1.2 for
commuters [5], which is much less than the typical 4-seat
capacity of cars. &is suggests that there is potential to

increase vehicle occupancy rates through carpooling and
ridesharing initiatives. A study conducted by Wang et al. [6]
demonstrated that increasing vehicle occupancy rates may
yield significant benefits in travel cost and time savings.
Furthermore, incentives for commuters have the potential to
reduce congestion. &is phenomenon has been documented
in field and controlled experiments that provided com-
muters with monetary incentives to promote off-peak de-
parture times [7, 8]. Ridesharing allows travellers to share
vehicles with those who have similar origins, destinations,
and schedules on short notice, which may reduce the net
number of vehicles in traffic by increasing the utilization of
vehicle capacity. &is may lead to significant social and
environmental benefits [9]. Compared with more traditional
road network optimization approaches, e.g., increasing
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capacity or adding public transit services, ridesharing can be
a cost-effective way to reduce urban congestion. Further-
more, commuting via ridesharing can be encouraged by
providing subsidies [10, 11].

In this paper, we explore the impact of subsidizing
ridesharing users on vehicle occupancy rates in a daily
morning commute context. We focus on a case study based
on a major motorway in Sydney, Australia, representative of
a freeway network with multiple origin-destination pairs.
We only consider ridesharing in the sense of carpooling, i.e.,
wherein, unlike in ride-sourcing markets, ridesharing
drivers also commute to their workplace. We consider that
users have the option to choose from different roles in-
cluding solo driver (SD), ridesharing driver (RSD), or
ridesharing passenger (RSP) or use a reserve travel option
(RO) that does not contribute to congestion effects on the
freeway network. We use a multinomial logit model to
capture users’ mode choice behavior in the long run wherein
mode-based utility functions are calibrated based on real
data. We use a link transmission model to capture con-
gestion effects on the freeway network. We then proposed a
simulation-based optimization framework to determine how
subsidies can be used to improve social welfare and reduce
congestion in the long run. Numerical experiments on the
proposed case study reveal that increasing the amount of
subsidy available to ridesharing drivers and passengers tends
to increase social welfare. However, we find that although
subsidizing ridesharing users may reduce congestion, in-
creasing the amount of subsidy may also increase congestion
levels on the freeway. Hence, this study provides nontrivial
insights to quantify the tradeoff between subsidizing strat-
egies, welfare, and system performance in a realistic daily
morning commute context.

&e rest of the paper is organized as follows. &e lit-
erature review is discussed in Section 1.1, and our contri-
butions are outlined in Section 1.2. &e proposed
methodology is introduced in Section 2. &e data used to
create the case study are presented in Section 3. Numerical
experiments are reported in Section 4, and concluding re-
marks are discussed in Section 5.

1.1. Literature Review. Ridesharing has the potential to
improve social welfare and has been the topic of several
studies in the transportation literature [12–14]. By pooling
rides, ridesharing provides opportunities to develop policies
for parking pricing discounts, toll pricing, and high occu-
pancy vehicle (HOV) lanes accessibility [15, 16]. &e re-
search of Ma and Zhang [17] shows that controlling parking
charge and ridesharing price in certain level may reduce the

total travel time and travel cost. However, many workers
received free parking place, so the method of parking price
control is not suitable for every traveller. Willson and Shoup
[18] proposed subsidies and penalties to manage parking fees
and incentivize ridesharing. Yet, the application of the
proposed mechanism may not be practical from an em-
ployers’ standpoint, especially for solo drivers. Liu and Li
[19] focus on examining the relationship between system
optimum pricing of road tolls and ridership with ride-
sharing. &eir study is thus limited to tolled roads. Fur-
thermore, there exists skepticism around the effectiveness of
HOV lanes in the transport community [20, 21]. A recent
report indicates that even though the number of HOV lanes
has increased in the US, the number of carpooling com-
muters is declining and the enforcement of the HOV lanes
remains a challenge [22]. &is suggests that further research
is needed to efficiently deploy incentives for promoting
ridesharing.

Most existing studies on ridesharing focus on matching
algorithms and aim to maximize the profits of the ride-
sharing operator rather than increasing social welfare or
reducing congestion. Simonetto et al. [23] and Gambella
et al. [24] develop a dynamic ridesharing algorithm and
system which shortens the running time at scale. Pandey
et al. [25] present a method to alleviate the service degra-
dation caused by ridesharing company competition. Agatz
et al. [26] aim at minimizing the users’ travel distance and
travel cost and their individual travel costs while Ghoseiri
[27]; Wang, Winter, and Tomko [28]; Wang, Agatz, and
Erera [29]; and Najmi et al. [30] also aim to find an optimal
matching amongst ridesharing drivers and passengers. Di
Febbraro et al. [31] use a discrete event system-based
simulation to examine the performance of a ridesharing
matching system. He et al. [32] and Aydin et al. [33] attempt
to improve ridesharing matching algorithms which consider
route choice. Route planning and optimization for ride-
sharing rides have also received growing attention in the
literature [34–36].

Statistical analyses showed that ridesharing could help in
reducing congestion and increasing social and environ-
mental benefits [37]. Yet, only a few studies have examined
the impact of ridesharing on congestion with the goal to
improve social welfare. Xu, Ordóñez, and Dessouky [38] and
Xu, Pang, Ordóñez, and Dessouky [39] examined the role of
ridesharing in the context of a static traffic equilibrium and
explored the impact of fare structures on ridership. How-
ever, they do not optimize social welfare in their formula-
tions. Furthermore, static network models have well-known
limitations including the lack of queue spillback and wave
propagation phenomena. Several studies have used dynamic
traffic models within simulation-based optimization
frameworks to increase the degree of accuracy of traffic
models so as to better inform decision-makers. In particular,
network pricing problems have been frequently solved using
simulation-based optimization methods [40–44].

In summary, most studies on ridesharing either focus on
matching algorithms or examine the impact of ridesharing
on congestion using static network models. While several
studies have proposed incentive methods to reduce

Table 1: Resident travel patterns, Sydney [3].

Mode share (average weekday)
Car driver 47.2% 2012/13
Car passenger 21.8% 2012/13
Train 5.4% 2012/13
Bus 6.0% 2012/13
Walk only 17.5% 2012/13

2 Journal of Advanced Transportation



www.manaraa.com

congestion, subsidies have not received as much attention as
alternative approaches.

1.2. Our Contributions. We make the following contribu-
tions to the field. We consider a morning commute problem
on a freeway network with multiple origins and destinations.
We assume that users have the possibility to choose amongst
different roles including SD, RSD, and RSP or use an al-
ternative travel mode, RO, that does not contribute to
congestion effects on the freeway. We assume that users aim
to maximize their utility and propose utility functions to
represent their preferences. We use a logit model to capture
users’ utilities in the long run and use a dynamic network
model to account for the impact of vehicle occupancy rates
on congestion effects. We then propose a simulation-based
optimization framework to determine optimal subsidies for
ridesharing users so as to maximize social welfare.

To illustrate the behavior of the proposed approach, we
design a case study based on real data representative of the
morning commute on Sydney’s M4 Motorway network in
Australia. &e road network, travellers’ demographics data,
and travel demand data are derived from open data sources.
Our study may help in quantifying the effects of subsidizing
ridesharing roles onto social welfare and network conges-
tion, thus providing managerial insights for mobility service
providers and transport authorities.

2. Methodology

&e goal of this study is to investigate the potential of
subsidies to increase the ridership of ridesharing travel
modes, i.e., ridesharing driver and ridesharing passenger,
and reduce congestion so as to improve social welfare. We
consider four travel modes, namely, SD, RSD, RSP, and RO,
which does not contribute to congestion effects. We first
present themathematical formulation of the utility functions
of each travel mode in Section 2.1 before introducing the
dynamic network model and the simulation-based opti-
mization framework in Section 2.2.

Table 2 summarizes the notations used throughout the
paper.

2.1. Utility Functions and Choice Model. We seek to derive
utility functions that are able to capture the preferences of
travellers towards the four travel modes considered. &e
factors which can affect travel demand include transport
options, prices, demand management, commercial activity,
land use, and demographics [45]. Although social factors,
such as the fear of sharing a ride with a potential stranger,
could impact the adoption of ridesharing roles, a reliable
reputation system could help travellers establish trust with
each other [9]. &erefore, we focus on commercial factors
including travel cost, parking cost, travel time, and walking
time as the main factors which impact the demand for
ridesharing.

Let W be the set of OD pairs in the freeway network.&e
total number of travellers of each OD pair is assumed to be
known and constant. Let Qw be the total demand for OD

w ∈W. &e travel demand of each OD pair is assumed to be
split across a set of travel modes. We denote by M the set of
travel modes and consider four modes including solo driver
(SD), ridesharing driver (RSD), ridesharing passenger (RSP),
and a reserve travel option (RO), denoted by s, d, p, and r,
respectively, i.e., M ≡ s, d, p, r . For each mode m ∈M, we
denote by qw

m the variable demand for mode m on OD
w ∈W, q � [qw

m]|M||W| � [qw
s , qw

d , qw
p , qw

r ]|W|. &e following
relationship holds for each OD pair of the network:

Q
w

� 
m∈M

q
w
m � q

w
s + q

w
d + q

w
p + q

w
r , ∀w ∈W. (1)

Let Pw
m ≥ 0 be the proportion of travellers of OD w ∈W

using mode m ∈M.&e number of users commuting on OD
w in mode m is determined as

q
w
m � Q

w
P

w
m, ∀w ∈W, ∀m ∈M. (2)

We assume that the form of utility functions for all travel
modes is known. Let βw

m be the constant part of the utility
function of mode m ∈M for OD w ∈W. Let bm be the
number of variable terms in the utility functions of mode
m ∈M. Let βw

m be the constant part of the utility function of
mode m ∈M for OD w ∈W. Let bm be the number of
variable terms in the utility functions of mode m ∈M. Let
Xw

v,m be the v-th variable in the utility function of mode m for
OD w, and let βv,m be its associated coefficient in the utility
function.&e utility function for mode m ∈M in OD w ∈W

is

U
w
m ≡ β

w
m + 

bm

v�1
βv,mX

w
v,m, ∀w ∈W, ∀m ∈M. (3)

We use a multinomial logit model to determine trav-
ellers’ mode choice proportions [46]. Since the model choice
is implicit in our numerical experiments, the mean of the
potential error term is zero and the scale parameter is
normalized to one. We assume that users’ travel mode
decisions in the long run follow a logistic distribution; hence,
the proportion of users for OD w ∈W using mode m ∈M is

P
w
m �

e
Uw

m

n∈Me
Uw

n
, ∀w ∈W, ∀m ∈M. (4)

Let yw
d ≥ 0 and yw

p ≥ 0 be the subsidy per unit distance
(e.g., in AUD/km) provided to RSD and RSP on OD w ∈W,
respectively. Let y � [yw

d , yw
p ]2|W| be the vector of RSD and

RSP subsidies. &e vector of subsidies y is the main decision
variable of the optimization problem proposed in Section
2.2. We consider that demand for each travel mode is en-
dogenous to mode-based travel times. Since subsidies to RSP
are assumed to affect the utility of this travel mode, in the
long run, the utilities of other travel modes are also function
of y and so is the travel demand across all modes and OD
pairs. To capture these phenomena, we denote by q(y) the
travel demand in the network and write OD- and mode-
based utilities as functions of this variable demand vector.

Let TTw
m(q(y)) be the travel time of OD w ∈W and

mode m ∈M. &is travel time is a function of the demand
q(y), which is itself function of the subsidy vector y. Let
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TCw
m(y), assumed to be a function of the demand, and WTw

m

be the travel cost and the walking time for OD w ∈W and
mode m ∈M, respectively. Let PCw be the parking cost for
OD w ∈W. For each mode m ∈M, we denote by βTC,m the
travel cost coefficient, we denote by βWT,m the walking time
coefficient, we denote by βTT,m the travel time coefficient,
and we denote by βPC,m the parking cost coefficient.

&e utility for the RSD mode on OD w ∈W is

U
w
s (y) � βw

s + βTC,sTC
w
s (y) + βWT,sWT

w
s + βTT,sTT

w
s (q(y))

+ βPC,sPC
w

.

(5)
&e utility for the RSD mode on OD w ∈W is

U
w
d (y) � βw

d + βTC,d TC
w
d (y) − y

w
d(  + βWT,dWT

w
d

+ βTT,dTT
w
d (q(y)) + βPC,dPC

w
.

(6)

&e utility of the RSP mode on OD w ∈W is

U
w
p (y) � βw

p + βTC,p TC
w
p (y) − y

w
p  + βWT,pWT

w
p

+ βTT,pTT
w
p (q(y)).

(7)

&e utility of the RO mode on OD w ∈W is

U
w
r � βw

r + βTC,rTC
w
r + βWT,rWT

w
r + βTT,rTT

w
r . (8)

In this study, we assume that the RO is not influenced by
congestion; hence the utility of the RO is assumed to be a
constant. &e utility parameters of each mode are deter-
mined using an initial traffic simulation. &is is used to
match the baseline mode shares in Table 3. Details on this
calibration procedure are provided in section 4.1.

Vehicle ownership cost may include various vehicle
related costs, e.g., depreciation, financing, insurance, reg-
istration, and repairs, which are assumed fixed and uniform
across OD pairs [47]. We denote such fixed costs by FC.
Energy costs for OD w ∈W are assumed to be function of
the OD travel time and thus of mode-based demand and are
denoted by ECw(q(y)). Hence, the travel cost function of
SD is

TC
w
s (y) ≡ FC + EC

w
(q(y)), ∀w ∈W. (9)

&is cost should be borne by vehicles owners including
SD and RSD. However, RSD are expected to decrease their
travel cost by receiving payments from RSP. We consider
that RSP pay RSD based on trip travel time and trip distance.
Let Dw be the trip distance of OD w ∈W and let rD be the
valuation of travel distance. Furthermore, let rTT be the
valuation of travel time and let BC be the base cost for using
the ridesharing system. We assume that a fraction of

Table 2: Signs and notations.

Notation Interpretation
βv,m Regression coefficient associated with the explanatory variable v and in mode m
Pm

w Probability of choosing mode m, OD w

q Demand matrix
Qw Demand of OD w

qm
w Travellers of choosing mode m, OD w

Um
w Utility value of travellers of mode m, OD w

Xv,m Regression variable associated with the explanatory variable v and in mode m
y Subsidy matrix
yw Subsidy to OD w

c Capacity (available seats) of ridesharing vehicles
d Ridesharing driver
p Ridesharing passenger
r Reserve options (e.g., train or bus)
s Solo driver
M Travel modes include d, p, r, and s
m Mode m in M
W OD matrix
w OD pair in W
FC Financial cost for holding a vehicle per day
ECw Energy cost for OD w

TCw
m Travel cost of mode m, OD w

BC Basic cost of ridesharing passenger
Dw Distance of OD w

TTw
m Travel time of mode m, OD w

rTT Payment rate of travel time
rD Payment rate of travel distance
rB Fraction of ridesharing passenger payment for booking ride
CS Consumer surplus
I Total subsidy investment
T Total transaction fees
SW Social welfare of the transport system
y &e upper bound of the subsidy per unit distance

4 Journal of Advanced Transportation



www.manaraa.com

passengers’ travel cost denoted by rB is allocated to the
ridesharing booking platform.

We assume that RSP cannot earn revenue by using
ridesharing services even with a subsidy. Accordingly, we
define the travel cost of RSP as the maximum between the
difference of presubsidy travel cost including booking fees
and the trip subsidy and zero. We assume that presubsidy
travel cost for RSP is BC + rDDw + rTTTTw

p (q(y)) and this
cost is augmented by dividing it by (1 − rB) to account for
booking fees. &e trip subsidy is determined as the per-unit
RSP subsidy times the trip distance, i.e., yw

p Dw. Accordingly,
the RSP travel cost is defined as

TC
w
p (y) ≡ max

BC + rDD
w

+ rTTTT
w
p (q(y))

1 − rB

− y
w
p D

w
, 0 ,

∀w ∈W.

(10)

Unlike RSP, we assume that RSDmay earn revenue from
providing ridesharing services. To determine the travel cost
of RSD, we first deduct from equation (9) the trip subsidy,
i.e., yw

d Dw, and similarly to the RSP take the maximum
between this difference and zero. &is aims to represent the
fact that RSD travel cost cannot be oversubsidized. We then
deduct the total payments from RSP from this amount. &e
average total payment from RSP can be determined by
multiplying the numerator within equation (10), which
represents RSP travel cost before subsidy and booking fees,
by the ratio of RSP to RSD users on each OD pair. Ac-
cordingly, the travel cost of RSD is

TC
w
d (y) � max TC

w
s (y) − y

w
d D

w
, 0  − 1 − rB( 

q
w
p

q
w
d

· BC + rDD
w

+ rTTTT
w
p (q(y)) , ∀w ∈W.

(11)

&e term max TCw
s (y) − yw

d Dw, 0 , in (11), is the travel
cost after subsidy. To prevent RSD from being over-
subsidized, we impose that the subsidy cannot exceed the
cost of SD, i.e., the fixed cost of vehicles and energy cost
of travel. &e term (1 − rB)(qw

p /qw
d )(BC + rDDw +

rTTTTw
p (q(y))) describes the income from RSP which de-

pends on the travel cost of RSP after transaction and the
number of passengers per vehicle.

We use the logsum measure to capture the change in the
expected consumer surplus. Let 0 be a null vector of ap-
propriate size corresponding to the no-subsidy case, i.e., the
baseline configuration. Let α be the marginal utility of travel
cost. We denote by CS(y) the change in the expected

consumer surplus relative to the baseline configuration
where no subsidies are available. &is change can be cal-
culated as

CS(y) �
1
α


w∈W

Q
w ln 

m∈M
e

Uw
m(y)⎛⎝ ⎞⎠ − ln 

m∈M
e

Uw
m(0)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(12)

CS(y) represents the total difference of custom surplus
in the system between after and before applying subsidies.
Let T(y) be the total transaction fee charged to ridesharing
passengers by the service platform, i.e.,
T(y) � w∈WrBTCw

p (y). Let I(y) be the total subsidy in-
vestment, i.e., I(y) � w∈Wm∈Myw

m. &e social welfare of
the system, denoted by SW(y), is

SW(y) � CS(y) − I(y) − T(y). (13)

&e goal of the proposed approach is to maximize social
welfare by optimizing the subsidy vector y while accounting
for traffic congestion and mode choice effects. We next
introduce the proposed simulation-based optimization
approach.

2.2. Simulation-Based Optimization Approach. To optimize
social welfare while accounting for congestion effects in-
duced by varying ridesharing subsidies and their impact on
users’ mode choice, we introduce a simulation-based opti-
mization approach built on an iterative equilibrium model.

To model traffic dynamics and its impact on congestion,
we use the Link Transmission Model (LTM), a numerical
solution method for dynamic network loading [48]. &e
LTM simulates traffic on the transport network under fixed
demand. To account for the effect of ridesharing subsidies
onto users’ mode choice we use a classical fixed-point al-
gorithm that iteratively simulates traffic to obtain OD- and
mode-based travel times and updates utility functions (5),
(6), and (7) accordingly. We use the Method of Successive
Averages (MSA) to iteratively equilibrate mode split pro-
portions for each OD based on OD- and mode-based travel
times. &e iterative procedure which consists of alternating
between traffic simulation using the LTM and equilibrating
OD- and mode-based demand q(y) for a given subsidy
vector y is hereby referred to as simulation(y).

Let qw,n−1
m be the demand of mode m ∈M for OD w ∈W

at the n − 1-th iteration of procedure simulation(y). Let qw,⋆
m

be demand of mode m ∈M for OD w ∈W obtained after
simulating traffic using the LTM and determining mode
choice proportion using the logit model (4). &e demand at
the n-th iteration is determined as

q
w,n
m �

1
n

q
w,⋆
m +

n − 1
n

q
w,n−1
m ∀w ∈W, ∀n ∈ N. (14)

Convergence of the procedure simulation (y) is assumed
to be achieved when the OD- and mode-based demand
vector q(y) remains near-constant after two consecutive
iterations. Specifically, let δn be the total absolute difference
between iterations n − 1 and n:

Table 3: Initial mode split.

Mode Proportion (%)
Solo driver 34.33
Ridesharing driver 22.88
Ridesharing passenger 26.42
Reserve options 16.36
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δn
� 

w∈W


m∈ s,d{ }

q
w,n
m − q

w,n−1
m


. (15)

We consider that procedure simulation(y) has con-
verged if δn ≤ εq for a predetermined εq value.

To formulate the proposed ridesharing subsidy opti-
mization problem, we embed the procedure simulation(y)

as a constraint of the simulation-based optimization for-
mulation and assume that the output of simulation(y) gives
an equilibrium demand vector q(y) which affects the utility
functions of the travel modes considered. In addition to
utility equations, we consider two constraints in the pro-
posed optimization formulation.We assume that all per-unit
subsidies are upper-bounded by the maximum available per-
unit subsidy y. Furthermore, we assume that the average
occupancy rate is upper-bounded by the vehicle capacity c.

&e resulting simulation-based optimization approach is
summarized in equations (16a)–(16d):

maximize SW(y),

subject to

utility functions : (5), (6), (7), ∀w ∈W,

(16a)

0≤y
w
m ≤y, ∀w ∈W, ∀m ∈ d, p , (16b)

q
w
d + q

w
p

q
w
d

≤ c, ∀w ∈W, (16c)

q(y) � simulation(y). (16d)

Equation (16a) is the objective function which aims to
maximize social welfare. Constraint (16b) sets bounds on
subsidy variables. Constraint (16c) is the capacity constraint.
Constraint (16d) imposes that the demand vector q(y) is an
equilibrated, logit-compatible split of the travel demand
across ODs and modes which accounts for congestion
effects.

To solve the proposed simulation-based optimization
formulation (16a)–(16d) we use a heuristic algorithm from
an off-the-shelf global optimization toolbox which aims to
optimize the subsidy vector y until the total absolute value of
the difference of two consecutive iterations is less than a
predetermined threshold εy. &e flowchart of the proposed
simulation-based optimization framework is illustrated in
Figure 1.

3. Data

In this section, we present the data used in this study.

3.1. FreewayNetwork. We consider a freeway network based
on theM4Motorway in Sydney, Australia, with multiple OD
pairs. &e traffic demand is obtained based on census data
from regions nearby the freeway [49]. &e M4 Motorway is
an important road which connects Western Sydney to
Sydney’s Central Business District (CBD). &e M4

Motorway serves more than 40,000 trips per day in a single
direction [50]. Due to congestion levels, the average speed
along the M4 Motorway is about 50% less than the maxi-
mum speed limit during peak hours [51].

&e morning commute (from West to CBD) is partic-
ularly critical from a congestion standpoint, based on trips
departure time [52] and compared with the traffic volumes
on the Great Western Highway [53]. &e number of trav-
ellers using motorised modes peaks at around 8:30 AM. &e
M4 Motorway is tolled on some parts of the road (West-
Connex) [54]. In our study, we focus on the nontolled part of
the motorway which covers over 70% of its length. As noted
by Terrill and Institute [1] the traffic flow towards the CBD is
significantly higher than that from the CBD; hence we focus
on Eastbound traffic only in our study.&e portion of theM4
Motorway considered in this study is depicted in Figure 2.
&e transport network was obtained from OpenStreetMap
[55]. &e capacity of the motorway is set to 2100 vehicle/h/
lane, the free-flow speed is 100 km/h, and the jam density is
180 vehicle/km/lane [56, 57]. &e road between B1 and A48
has three lanes and the rest of the freeway network con-
sidered has four lanes.

3.2. Travel Demand Data. We focus on the Eastbound
morning commute between 6:30 am and 9:30 am. &e
numbers of travellers travelling to work are taken from
Australian Census [58]. &ose who usually live nearby the
M4 Motorway and have workplaces to the East of the usual
residences are the potential travellers taking vehicles on
M4 Motorway. Between 6:30 and 9:30 am, there are 60%
trips belonging to nondiscretionary [4] and they are
considered as the commuters represented in the census
data. To determine an initial travel mode split between SD
and RSD (which is not provided in the census data), we
make the following assumption. Since 60% of the trips
belong to nondiscretionary between 6:30 and 9:30 am [4]
and the commuting occupancy is close to 1, we assume that
60% of the vehicle drivers are SD and the other drivers are
RSD. &e resulting baseline travel mode split is given in
Table 1.

To determine the travel demand we make the following
assumptions. According to Traffic Volume Viewer [50], the
flow on the M4 is around 60% of the sum of the M4 Mo-
torway and the Great Western Highway which is a substitute
for M4 Motorway. &e vehicle flow from point B1 is
3056.25 vph in morning peak, while it is 34964 vehicles in
one weekday (see Figure 2). &is corresponds to 8.7% of the
total flow. Note that there are no off-ramps at the B2, B4, B7,
and B8 sites. From the above information and census data,
we obtain the hourly travel demand matrix summarized in
Table 4.

&e traffic flows from B1 in Table 4 (top row) are
regarded as fixed background flows which are not consid-
ered in the optimization and are assumed fixed. &e coef-
ficients of the logit model are shown in Table 5 and there is
only a constant value for SD (βs � 0.575), which is the mean
of other parameters from Ciari and Axhausen [10]. &e unit
for cost is Australian dollars (AUD) and the unit for time is
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minutes. For other modes, the constant coefficient values are
determined as discussed in Section 2.

We assume that the value of time is 13.73AUD/h for
every mode [59, 60], which is more conservative than values
used in the research of Hensher et al. [61]. According to
Schuster et al. [47], the financial cost of a vehicle ownership
is 6150.5USD per year and the cost rate to RSP is selected as
3.9USD/h, 0.39USD/mile, and 10USD monthly cost. We
convert USD values to AUD by assuming a 50% increase.
&e number of trips of vehicle owners is 2 trips per day and
the usage of RSP is 26.42% in a workday. Accordingly, the

constants in equation (10) are set to BC � 2.84AUD,
rTT � 3.73AUD/h, and rD � 0.41AUD/km. In equation (9)
FC is set to 12.64AUD per trip. Since travel times are ex-
pected to be less than a half hour, the impact of travel time
on energy cost is assumed negligible and the fuel cost is set to
0.12AUD/km.

4. Numerical Experiments

In this section, we present the numerical experiments
conducted and discuss numerical results.

Data loading and
preprocessing model

parameters

Optimize subsidy using a 
global optimization heuristic

Simulation

Mode choice: MSA

LTM

No No
New demand from

new travel time

Mode choice
converged?

Yes

Global optimization
heuristic converged?

Yes

Subsidies, utilities, travel
mode proportions

Figure 1: Flowchart of the simulation-based optimization framework. &e procedure simulation(y) is shown with a dashed line.
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4.1. Experiments’ Design. &e utility parameters of each
mode are determined using an initial traffic simulation based
on the mode split provided in Table 3. &e RO utility Uw

r is
determined from equations (3) and (4) and Uw

s , where the
utility of SD, Uw

s , is obtained from an initial simulation
using equation (5). After this initial simulation, the utility of
other modes is determined as follows:

U
w
a � U

w
s

P
w
a

P
w
s

, ∀w ∈W, a ∈M\ s{ }. (17)

Similarly, the constant parameters of Uw
d and Uw

p are
determined after the initial simulation using equations (6)
and (7). Furthermore, in our numerical experiments we
require that the RSD and RSP subsidies per unit of distance
be identical across ODs.&at is, yw

d � yD and yw
p � yp for all

w ∈W. We assume that vehicles are homogeneous and that
their capacity is c � 3. &e proposed simulation-based op-
timization framework (see Figure 1) is implemented on a
desktop computer using MATLAB. &e LTM toolbox
[62, 63] is used to solve the LTM numerically. For the
procedure simulation(y), we use the stopping criterion
εq � 0.001w∈WQw, which represents a total deviation be-
tween two consecutive iterations of less than 0.1% of the total
demand. MATLAB’s Pattern Search procedure is used as the
global optimization heuristic to iteratively optimize the
subsidy vector y with a threshold of εy � 0.001, i.e., less than
1 cent.

4.2. Simulation Results. Two types of indicators are used to
describe the performance of the transport system and that

Background traffic flow
Intersection of Interest
M4 motorway

OD pair
1
2
3

Intersection
A9-M7
A9-A28
A9-A44

Intersection
M7-A28
M7-A44
A28-A44

OD pair
4
5
6

Figure 2: Sydney’s M4 Motorway.

Table 4: Total demand.

B3 M7 B5 B6 A28 A44
B1 445.65 551.42 157.24 193.15 592.15 1116.64
A9 310.06 382.90 109.18 134.12 411.19 775.38
B2 247.56 306.26 87.44 107.21 328.92 620.28
B3 232.81 82.88 106.60 286.19 508.66
B4 348.38 139.75 180.81 497.10 901.14
M7 175.79 258.21 709.99 1557.15
B5 17.49 514.44 1035.72
B6 716.38 1445.38
A28 4928.14
B7 594.12
B8 594.12

Table 5: Utility parameters.

Mode Utility parameters Value

All Travel cost −0.05524
Walking time −0.0438

SD
Constant 3.4994
Travel time −0.03
Parking cost −0.06311

RSD
Constant —
Travel time −0.0348
Parking cost −0.149511

RSP Constant —
Travel time −0.0379

RO Others —
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impact on the OD pairs considered for subsidy allocation.
One of the key factors is social welfare which is the expected
consumer surplus minus the total subsidy investment.
Another indicator of performance is the total system travel
time (TSTT) which indicates the congestion level. TSTT is
the total travel time of on-road vehicles consisting of SD and
RSD.

We examine the behavior of the system via a series of
experiments for varying model parameters. We explore the
impact of the maximum subsidy available in Section 4.2.1
and the impact of the platform booking (transaction) fee in
Section 4.2.2. In the former, we vary the maximum available
subsidy from 0 to 2 AUD/km with a step of 0.1 AUD/km for
a fixed booking fee of rB � 20%. In the latter, we consider six
values between 0 and 50% in steps of 10% with a maximum
subsidy of y � 1.5AUD/km.

4.2.1. Impact of the Maximal Subsidy on Welfare and System
Performance. &e impact of the maximum subsidy available
on social welfare and the TSTT for a fixed transaction rate
rB � 20% is depicted in Figure 3. TSTT decreases while
increasing the maximum subsidy available from 0 to
1.3AUD/km, and the decrease is faster before 0.7AUD/km.
&en, it slows down before becoming steady at 1.3AUD/km.
&e trend of social welfare is reciprocal to that of TSTT for a
maximum available subsidy of 1.1AUD/km. Beyond this
value, both social welfare and TSTT plateau.

Figure 4 summarizes the impact of the maximum
available subsidy on each of the 6 main ODs in the network.
In Figure 4(a), the changes of vehicle occupancy rates of
main ODs as a function of the maximum subsidy available
are depicted. All of the occupancy rates on the ODs of
interest increase until the maximum subsidy available rea-
ches 1.1 AUD/km.We find that the impact on the occupancy
rate is more significant for longer ODs, since the trends of
A9-A28 and A9-A44 in these two ODs are sharper.
Figure 4(b) shows the speed variation of each of the 6 main
ODs as a function of the maximum subsidy available. We
find that there is almost no impact of subsidy on OD A28-
A44 because the speed of this OD is near the free-flow speed.

On the other ODs, the speeds increase until the subsidy is
1.1AUD/km.

Figure 4(c) shows the variation of the RSP travel cost as a
function of the maximum subsidy available, while
Figure 4(d) shows that of RSD. From Figure 4(c), we observe
that the RSP travel cost of the ODs except for A28-A44
decreases with the maximum subsidy available until the
subsidy matches the travel cost. However, A28-A44 stops
decreasing before zero. Hence, subsidy investment some-
times may not meet the same benefit return. &e negative
value in Figure 4(d) means that RSD earn revenue from
ridesharing services by providing rides to RSP. Except for
ODs M7-A28 and A28-A44, RSD are expected to earn
revenue. As expected, RSP with shorter travel distance need
higher per-unit subsidies to cover their travel cost due to the
fixed part of trip costs.

Figure 5 depicts the variation of the allocated subsidies as
a function of the maximum subsidy available. It illustrates
that the optimal subsidy to RSD is not equal to themaximum
available subsidy. &is means that allocating the maximum
subsidy may not always be the best strategy for every trip
mode to improve the social welfare. Furthermore, we ob-
serve that beyond 1.1AUD/km both subsidies to RSD and
RSP plateau.

&e elasticities of RSD and RSP for the main OD pairs to
subsidy (travel cost reduction) for the calibrated baseline
model are reported in Table 6. Since the initial subsidy is
null, we use the midpoint arc elasticity formula [45]. &e
situation after subsidy is set to 1.1AUD/km which is the
maximum available subsidy when the scheme is optimal.&e
mean elasticity of the main ODs and the weighted mean
based on the total demand are also indicated in Table 6. It
can be seen that RSP is more sensitive to subsidy than RSD
and that the elasticity on longer ODs is higher than that on
shorter ODs.

4.2.2. Impact of the Transaction Fee Rate on Welfare and
System Performance. Figure 6 displays the variation of social
welfare and TSTT for a varying transaction fee rate, i.e.,
ridesharing platform booking fees. Overall, TSTT increases
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Figure 3: Social welfare and TSTT as functions of subsidy.
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with the transaction fee rate while social welfare declines.
TSTT only slightly reduces between 30% and 40% which is
possibly due to the heuristic optimization approach used.

&e impact of the transaction fee rate on the ODs of
interest is summarized in Figure 7. Figure 7(a) shows the
trend of the vehicle occupancy rate as a function of the
transaction fee rate. We find that the occupancy rates on the
main ODs decrease with the transaction fee rate. ODs with a
longer distance are more sensitive to the transaction fee rate.
Figure 7(b) shows the variation of speed on the main ODs as
a function of the transaction fee rate. Except for OD A28-
A44 which is unaffected by congestion, the trend of average

speeds across ODs is aligned with the change of the occu-
pancy rate in Figure 7(a).

Figures 7(c) and 7(d) reveal the relationship between
travel cost and transaction fee rate for each OD of interest.
As expected, the RSP travel cost increases with the trans-
action fee rate. &e travel cost of RSD also increases with the
transaction fee rate but at significantly lower growth rate
compared to RSP. Figure 8 depicts the trend of the allocated
subsidies as a function of the maximum subsidy available.
Overall, the allocated subsidy to RSP reduces with the
transaction fee rate. &is suggests that higher transaction fee
rates reduce the benefits from subsidies.
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Figure 4: Detailed analysis of the impact of the maximum subsidy available on the 6 main ODs in the network. (a) Vehicle occupancy. (b)
Speed. (c) Average RSP travel cost. (d) Average RSD travel cost.
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5. Discussion

&roughout our numerical experiments, we find that
subsidizing ridesharing users can increase social welfare.
&is highlights the tradeoffs between the proportion of
ridesharing users and the expected change in consumer
surplus as a result of deploying subsidies. Our results also
reveal that increasing the available subsidy to ridesharing
users may be superfluous, thus providing managerial in-
sights for travel demand management. &e plots in
Figures 4(c) and 4(d) show that the travel costs of ride-
sharing users on the main six ODs stabilize after a certain
subsidy which is aligned with the vehicle occupancy rate

observed on these ODs beyond this threshold. Further-
more, the maximum available subsidy is not always the
optimal one. As shown in Figures 5 and 8, the subsidy to
RSD is always below the maximum available subsidy. &e
impact of the transaction fee rate shows that social welfare
decreases and the average vehicle occupancy rate tends to
decrease with the transaction fee rate. In turn, TSTT in-
creases with the transaction fee rate. RSD and RSP subsidies
tend to decrease with the transaction fee rate. &is high-
lights the tradeoffs between consumer surplus and subsidy
investment. &is suggests that policies supporting a rela-
tively high transaction fee rate may not be beneficial from a
system perspective.

Allocated subsidy to RSD
Allocated subsidy to RSP

0

0.2

0.4

0.6

0.8

1

1.2

A
llo

ca
te

d 
su

bs
id

y 
(A

U
D

/k
m

)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

Maximum subsidy available (AUD/km)

Figure 5: Subsidy allocated as a function of subsidy.

Table 6: Elasticity of mode demand to subsidy.

OD A9-M7 A9-A28 A9-A44 M7-A28 M7-A44 A28-A44 Mean W-mean
RSD 0.047 0.076 0.081 0.027 0.040 0.007 0.047 0.026
RSP 0.237 0.317 0.342 0.167 0.214 0.077 0.226 0.151
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Figure 7: Detailed analysis about transaction fee rate for the 6 main ODs in the network. (a) Vehicle occupancy as a function of transaction
fee rate. (b) Speed as a function of transaction fee rate. (c) Average RSP travel cost as a function of transaction fee rate. (d) Average RSD
travel cost as a function of transaction fee rate.

0 10 20 30 40 50
Transaction fee rate (%)

0

0.5

1

1.5

A
llo

ca
te

d 
su

bs
id

y 
(A

U
D

/k
m

)

Allocated subsidy to RSD
Allocated subsidy to RSP

Figure 8: Subsidy allocated as a function of transaction fee rate.

12 Journal of Advanced Transportation



www.manaraa.com

6. Conclusion

In this study, we have explored the potential of providing
monetary incentives for ridesharing users, i.e., subsidies, to
increase social welfare and reduce traffic congestion by
increasing the vehicle occupancy rate. We focus on a freeway
network with multiple origin-destination pairs and consider
four travel modes including solo drivers, ridesharing drivers,
ridesharing passengers, and a reserve option that does not
contribute to congestion on the network. We proposed a
simulation-based optimization framework that combines
iterates between a global optimization heuristic that selects
subsidies and a simulation procedure that aims to determine
equilibrium mode choice proportions in the long run.

&e proposed simulation procedure iterates between a
link transmission model (LTM) to determine traffic con-
gestion and calculating logit-compatible mode choice pro-
portions. Upon convergence, the proposed simulation-based
optimization approach finds equilibrated travel demand
proportions across travel modes. We considered a realistic
case study representative of the morning commute on
Sydney’s M4 Motorway in Australia, synthesized from open
data sources.

Our numerical experiments reveal that the vehicle oc-
cupancy rate can be increased up to 2.4 on some OD of the
freeway and that congestion levels can be substantially re-
duced by adequately setting the maximum subsidy available
and the transaction fee rate between ridesharing passengers
and drivers. For this, excessively increasing the maximum
available subsidy to ridesharing users may be counterpro-
ductive from a congestion mitigation standpoint, thus
providing quantifiable insight into the impacts of ride-
sharing incentives on social welfare and system perfor-
mance. In addition, the subsidies to ridesharing drivers
(RSD) and ridesharing passengers (RSP) could be imple-
mented under different policies since the optimal subsidy to
RSD to maximize welfare may not always be the maximum
subsidy available. Overall, we find that subsidy-based
ridesharing incentives may help in reducing the number of
vehicles on the road, which could also lead to reduction in
terms of environmental cost [64]. Furthermore, the ap-
proach proposed in this study may help informing on in-
vestment strategies across public transit (represented by the
reserve option) and road infrastructure may benefit from the
reduction of on-road vehicles. &e transport facility is as-
sumed invariable in the experiment. Nevertheless, since the
findings of this study are obtained based on a case study of
Sydney’s M4 Motorway, knowledge transfer to other net-
works and regions should be done with care.

&is study may be extended in several directions. First,
many ridesharing platforms use dynamic transaction fee
rates which influences users’ preferences in the long run
[65]. Hence, modeling profit-maximizing mobility service
providers and the impact of competition on travel demand
across modes is a promising avenue of research. Second, the
proposed model can be enriched by including additional
features such as tolled roads, dynamic parking costs, and
HOV lanes. Last, the present study only focused on a freeway
network. Exploring the behavior of ridesharing incentives in

a general dynamic network and accounting for users’ route
choice is a challenging and promising extension of this work.

Data Availability

&e data used in our paper can be obtained from open data
sources referenced in the paper.

Conflicts of Interest

&e authors declare that they have no conflicts of interest.

References

[1] M. Terrill and G. Institute, Stuck in traffic?: Road Congestion in
Sydney and Melbourne, Grattan Institute, 2017, https://books.
google.com.au/books?id�nn7FtAEACAAJ.

[2] Chester D. (2017), ‘Victorian transport association state
conference’. URL: http://minister.infrastructure.gov.au/
chester/speeches/2017/dcs007_2017.aspx.

[3] Bureau of Transport Statistics (2016), ‘Nsw and Sydney
Transport Facts 2016’..

[4] G. Corpuz, “Analysis of peak hour travel using the sydney
household travel survey data,” in Proceedings from the 29th
Australasian Transport Research Forum, Gold Coast, Aus-
tralia, September 2006.

[5] E. E. Agency, Are We Moving in the Right Direction?: Indi-
cators on Transport and Environment Integration in the EU,
European Communities, Brussels, Belgium, 2000.

[6] X. Wang, M. Dessouky, and F. Ordonez, “A pickup and
delivery problem for ridesharing considering congestion,”
Transportation Letters, vol. 8, no. 5, pp. 259–269, 2016.

[7] D. Merugu, B. S. Prabhakar, and N. Rama, “An incentive
mechanism for decongesting the roads: a pilot program in
Bangalore,” in Proceedings of ACM NetEcon Workshop,
Princeton, NJ, USA, December 2009.

[8] D. Rey, V. V. Dixit, J.-L. Ygnace, and S. T. Waller, “An en-
dogenous lottery-based incentive mechanism to promote off-
peak usage in congested transit systems,” Transport Policy,
vol. 46, pp. 46–55, 2016.

[9] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimi-
zation for dynamic ride-sharing: a review,” European Journal
of Operational Research, vol. 223, no. 2, pp. 295–303, 2012.

[10] F. Ciari and K. W. Axhausen, “Choosing carpooling or car
sharing as a mode: Swiss stated choice experiments,” in
Proceedings of TRB 91st Annual Meeting Compendium of
Papers, pp. 12–4205, Transportation Research Board,
Washington, DC, USA, January 2012.

[11] X. Liu, X. Yan, F. Liu, R. Wang, and Y. Leng, “A trip-specific
model for fuel saving estimation and subsidy policy making of
carpooling based on empirical data,” Applied Energy, vol. 240,
pp. 295–311, 2019.

[12] B. Caulfield, “Estimating the environmental benefits of ride-
sharing: a case study of Dublin,” Transportation Research Part
D: Transport and Environment, vol. 14, no. 7, pp. 527–531,
2009.

[13] A. Levofsky and A. Greenberg, “Organized dynamic ride
sharing: the potential environmental benefits and the op-
portunity for advancing the concept,” in Proceedings of
Transportation Research Board 2001 Annual Meeting, pp. 7–
11, Washington, DC, USA, January 2001.

[14] B. Yu, Y. Ma, M. Xue et al., “Environmental benefits from
ridesharing: a case of beijing,” Applied Energy, vol. 191,
pp. 141–152, 2017.

Journal of Advanced Transportation 13

https://books.google.com.au/books?id=nn7FtAEACAAJ
https://books.google.com.au/books?id=nn7FtAEACAAJ
http://minister.infrastructure.gov.au/chester/speeches/2017/dcs007_2017.aspx
http://minister.infrastructure.gov.au/chester/speeches/2017/dcs007_2017.aspx


www.manaraa.com

[15] D. Brownstone and T. F. Golob, “&e effectiveness of ride-
sharing incentives,” Regional Science and Urban Economics,
vol. 22, no. 1, pp. 5–24, 1992.

[16] S. Shaheen, A. Cohen, M. Randolph, E. Farrar, R. Davis, and
A. Nichols, Ridesharing (Carpooling and Vanpooling), Tech-
nical Report, Institute of Transportation Studies, Berkeley, CF,
USA, 2019.

[17] R. Ma and H. M. Zhang, “&e morning commute problem
with ridesharing and dynamic parking charges,” Trans-
portation Research Part B: Methodological, vol. 106, pp. 345–
374, 2017.

[18] R. W. Willson and D. C. Shoup, “Parking subsidies and travel
choices: assessing the evidence,” Transportation, vol. 17, no. 2,
pp. 141–157, 1990.

[19] Y. Liu and Y. Li, “Pricing scheme design of ridesharing
program in morning commute problem,” Transportation
Research Part C: Emerging Technologies, vol. 79, pp. 156–177,
2017.

[20] J. Kwon and P. Varaiya, “Effectiveness of California’s high
occupancy vehicle (HOV) system,” Transportation Research
Part C: Emerging Technologies, vol. 16, no. 1, pp. 98–115, 2008.

[21] R.Wang, “Shaping carpool policies under rapid motorization:
the case of Chinese cities,” Transport Policy, vol. 18, no. 4,
pp. 631–635, 2011.

[22] POOLE R.. (2020), ‘&e impact of hov and hot lanes on
congestion in the United States’. URL: https://www.itf-oecd.
org/impact-hov-and-hot-lanes-congestion-united-states.

[23] A. Simonetto, J. Monteil, and C. Gambella, “Real-time city-
scale ridesharing via linear assignment problems,” Trans-
portation Research Part C: Emerging Technologies, vol. 101,
pp. 208–232, 2019.

[24] C. Gambella, J. Monteil, A. Dekusar, S. Cabrero Barros,
A. Simonetto, and Y. Lassoued, “A city-scale IoT-enabled
ridesharing platform,” Transportation Letters, vol. 12, no. 10,
pp. 706–712, 2020.

[25] V. Pandey, J. Monteil, C. Gambella, and A. Simonetto, “On
the needs for maas platforms to handle competition in
ridesharing mobility,” Transportation Research Part C:
Emerging Technologies, vol. 108, pp. 269–288, 2019.

[26] N. Agatz, A. L. Erera, M. W. P. Savelsbergh, and X. Wang,
“Dynamic ride-sharing: a simulation study in metro atlanta,”
Procedia-Social and Behavioral Sciences, vol. 17, pp. 532–550,
2011.

[27] K. Ghoseiri, Dynamic Rideshare Optimized Matching Prob-
lem, PhD &esis, University of Maryland, College Park, ML,
USA, 2012.

[28] Y. Wang, S. Winter, and M. Tomko, “Collaborative activity-
based ridesharing,” Journal of Transport Geography, vol. 72,
pp. 131–138, 2018.

[29] X. Wang, N. Agatz, and A. Erera, “Stable matching for dy-
namic ride-sharing systems,” Transportation Science, vol. 52,
no. 4, pp. 850–867, 2018.

[30] A. Najmi, D. Rey, and T. H. Rashidi, “Novel dynamic for-
mulations for real-time ride-sharing systems,” Transportation
Research Part E: Logistics and Transportation Review, vol. 108,
pp. 122–140, 2017.

[31] A. Di Febbraro, E. Gattorna, and N. Sacco, “Optimization of
dynamic ridesharing systems,” Transportation Research Re-
cord: Journal of the Transportation Research Board, vol. 2359,
no. 1, pp. 44–50, 2013.

[32] W. He, D. Li, T. Zhang, L. An, M. Guo, and G. Chen, “Mining
regular routes from gps data for ridesharing recommenda-
tions,” in Proceedings of the ACM SIGKDD International

Workshop on Urban Computing, pp. 79–86, Beijing, China,
August 2012.

[33] O. F. Aydin, I. Gokasar, and O. Kalan, “Matching algorithm
for improving ride-sharing by incorporating route splits and
social factors,” PLoS One, vol. 15, no. 3, p. e0229674, 2020.

[34] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Empty-car
routing in ridesharing systems,” Operations Research, vol. 67,
no. 5, pp. 1437–1452, 2019.

[35] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Fluid-model-
based car routing for modern ridesharing systems,” ACM
SIGMETRICS Performance Evaluation Review, vol. 45, no. 1,
pp. 11-12, 2017.

[36] W. Herbawi and M. Weber, “Evolutionary multiobjective
route planning in dynamic multi-hop ridesharing,” in Evo-
lutionary Computation in Combinatorial Optimization,
P. Merz and J.-K. Hao, Eds., Springer, Berlin, Heidelberg,
pp. 84–95, 2011.

[37] K. K. Dewan and I. Ahmad, “Carpooling: a step to reduce
congestion,” Engineering Letters, vol. 14, no. 1, pp. 61–66,
2007.
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